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Self-referential method for calculation of the free energy of crystals by Monte Carlo simulation

C. Daniel Barnes and David A. Kofke
Department of Chemical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260-4200

~Received 15 October 2001; published 6 March 2002!

We propose a Monte Carlo simulation method for the evaluation of free energies in crystalline systems. In
principle, the method involves evaluating the free-energy difference between systems ofN molecules and 2N
molecules. This difference, coupled with the assumption that the free energy is extensive and thus proportional
to N, provides sufficient information to obtain the absolute free energy of the crystal. The approach to doubling
the system size does not involve insertion or removal of molecules in the system. Instead, the configurations of
the molecules are expressed in terms of the normal-mode coordinates of a harmonic lattice. By decoupling
certain of these coordinates from the molecule configurations, we obtain a transformation that in effect yields
the system-size doubling. The method is examined via application to a system of hard rods in one dimension.
This simple model is considered principally because of the availability of an analytic solution for its free
energy, which permits accurate testing of the performance and correctness of the proposed method. In using the
hard-rod model we also avoid other complications related to treatment of the temperature, and application of
normal-mode coordinate decoupling in higher dimensions. The proposed method is shown to be able to provide
good results for the free-energy calculation, but further development will be needed before it can be considered
practical for general-purpose use.

DOI: 10.1103/PhysRevE.65.036709 PACS number~s!: 02.70.Rr, 05.10.Ln, 65.40.Gr, 63.20.Dj
he
r

tin
try
e
r

e
o
r

ct
ls

es
ly
io
fre
in
ad
tin

d
ul
he
-
i
a

ta
d

d

ort
t of
en-
ems
use
ol-

tem
n be
re-

ast,
by
s a
e.

sive.
n-

nce

to
al is
a

ems
on-
ulk

ured
s-
t of
nce
ible
ost
nd
I. INTRODUCTION

The development of methods for the calculation of t
free energy of solids continues to be of interest for seve
reasons. Improved understanding of conditions promo
crystallization is important in the petrochemical indus
where wax formation in oil wells, storage tanks, and pip
lines causes regular shutdowns at substantial expense. C
tallization is becoming increasingly important in the sp
cialty chemical and biochemical industries as a method
separation for components that have low-melting tempe
tures or where distillation would break down the produ
before the boiling point is reached. Product design can a
benefit from an understanding of equilibria in solid phas
Semiconductor alloys exhibit miscibility gaps that strong
influence the quality of the product, depending on product
conditions. All of these phenomena are governed by the
energy of solid phases relative to fluids, or other crystall
solid forms. Molecular modeling of such systems can be
vanced through the improvement of methods for evalua
solid-phase free energies by molecular simulation.

We begin by pointing out some of the difficulties involve
in measurement of solid-phase free energies by molec
simulation, with the idea that a discussion highlighting t
problems will aid in the formulation of their solution. How
ever, in the present paper, we do not succeed in overcom
these difficulties, but we see these efforts as proving a p
that might achieve this aim.

Existing methods for measuring free energies of crys
line phases are not applied as easily as those develope
fluids. Fluid-phase systems can rely on the Euler relation@1#
for free-energy calculation

A[U2TS52pV1mN, ~1.1!

whereA is the Helmholtz free energy,U andS are the inter-
1063-651X/2002/65~3!/036709~9!/$20.00 65 0367
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nal energy and the entropy, respectively,p is the pressure,V
the volume, andm and N are the chemical potential an
number of molecules. In this equation,p, V, and N are
known or easily measured in simulation@2,3#, andm too can
be evaluated reliably, albeit with more computational eff
@4#. The amount of computation required for measuremen
a free-energy difference scales exponentially with the
tropy difference between the target and reference syst
@5,6#. The chemical potential is a tractable quantity beca
in a fluid it can be determined by a process in which a m
ecule is inserted into the simulated system@7–9#. The ac-
companying entropy change does not scale with the sys
size, and consequently the free-energy measurement ca
accomplished with a manageable amount of computation
gardless of the number of molecules simulated. In contr
direct measurement of the free energy itself, for example
computing its difference with respect to an ideal gas, yield
value that scales asN because the free energy is extensiv
Since the entropy difference too scales withN, we find that
extensive free-energy measurements can be quite expen
Thus for fluids, the ability to evaluate an extensive free e
ergy via measurement of an intensive free-energy differe
is of great utility.

Crystalline phases cannot rely on the Euler equation
evaluate the free energy, because the chemical potenti
not available as it is for fluids. Insertion of a molecule into
crystalline phase leads to a defect, and for the small syst
studied by simulation this single defect corresponds to a c
centration that is not representative of that expected in a b
crystal. Thus, solid phase free energies must be meas
directly, by calculation of a difference with a reference sy
tem@10#. Usually this reference is selected to be some sor
perfect noninteracting crystal, and the free-energy differe
is evaluated by thermodynamic integration along a revers
path joining the reference and target systems. The m
widely used technique of this type is due to Frenkel a
©2002 The American Physical Society09-1
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Ladd @11#, who employ an Einstein crystal. More recent
methods have been put forth to join phases of different c
talline symmetry@12,13#, which can be useful to study poly
morphism.

One concern with the existing methods for free-ene
measurement in crystals is the possible occurrence of a p
transition along the path of integration. The presence of s
a transition invalidates the use of thermodynamic integrat
and can make other free-energy difference methods diffi
or impossible to apply. Another issue is one of efficien
The simulations devoted to traversing the path from the
erence to the target are of no use for other property meas
ments; such simulations have no intrinsic interest aside f
their use in measuring the crystalline free energy. This c
trasts with the situation in the fluid, in which the molecul
insertion free-energy measurement can in many cases b
complished while simulating the system of interest. Rela
to this is the ability to perform direct measurement of pha
coexistence in fluid phases via the Gibbs ensemble@3,14,15#.
Such a method is inapplicable to equilibria involving solid

In this paper we describe a free-energy calculat
method for solids. The approach is based on measuring
free-energy difference between a 2N-particle system and an
N-particle system plus anN-particle Debye harmonic lattice
The trick in doing this is to use harmonic normal-mode c
ordinates to parameterize the particle positions in the si
lated system. In this way we can in effect increase the sys
size without inserting particles or introducing spurio
boundary effects. The complete set of harmonic norm
modes for anN-particle system forms a subset of the norm
modes of the 2N-particle system, making it possible to co
struct a free-energy path between them by switching on
modes not common to both system sizes. Further, since
free energy is an extensive quantity, and presuming we
ignore finite-size effects~as is reasonable for sufficientl
large systems!, this free-energy difference is equivalent
the free energy of theN-particle system.

This approach requires sampling of configurations
which certain normal modes of the 2N-particle system are
zero, and consequently it requires trial displacements
normal-mode space instead of the more conventional
particle displacements in one-dimensional Cartesian sp
This does not affect the sampling of the 2N-hard-rod con-
figuration space except to fix the system’s center-of-m
~c.m.!, which is addressed below. Although the sampling
curs in normal mode space, the test for accepting or rejec
a configuration is done conventionally by computing the
ergy expressed via Cartesian coordinates.

This self-referential method to evaluate the free energ
appealing because it circumvents some of the problems
lined above for the existing methods. The perturbation p
never really departs from the target system, so we need
be concerned with encountering a phase transition along
way, and at all times other properties of the target sys
remain accessible to measurement. However, this me
does not avoid the problem with measuring an extensive
energy, and moreover, the need to sample in normal-m
space is a complicating factor. We believe that the ideas
derlying this method can lead to alternatives for solids t
03670
s-

y
se
h

n,
lt
.
f-
re-
m
-

ac-
d
e

.
n
he

-
u-
m

l
l

e
he
an

in
al
e.

s
-
g
-

is
t-

th
ot
he
m
od
e

de
n-
t

are analogous to insertion methods that work so well
fluids. If the method can be shown to be viable for gene
systems, the programming and computational expense
volved with sampling normal-mode coordinates would
worthwhile.

Our approach is developed and demonstrated with Mo
Carlo simulation applied to a canonical~NVT! ensemble of
one-dimensional hard rods with periodic boundaries. T
method can be extended to other model systems an
higher dimensions. The hard-rod system is convenient
cause there exists an analytical solution for its free ene
@16#, correct for any system size, which enables direct co
parison of results of the proposed method with the exact
energy

e2bAN~b,L !5QN~b,L !5
L~L2Ns!N21

N!
. ~1.2!

Here, AN and QN are the Helmholtz free energy and th
canonical partition function, respectively, for a system ofN
hard rods each of lengths in a periodic container of length
L, andb51/kT with k Boltzmann’s constant andT the ab-
solute temperature. The ensemble-averaged potential en
of this model is zero, so the free energy and entropy
equal; this feature eliminates some complications that
prefer to avoid at this point in the development of the me
odology. The one-dimensional~1D! system does not underg
any phase transitions, so one might argue that there is
solid phase, but the system does exhibit the crucial fea
that the particles occupy a ‘‘lattice,’’ inasmuch as for all re
evant configurations each particle may be unambiguously
sociated with a 1D lattice site.

In the following section we develop the formalism for th
proposed method. Monte Carlo simulation details are
scribed in Sec. III. We present and discuss the results in S
IV and give our conclusions in Sec. V.

II. FORMALISM

As is well known@17#, the energy of a system ofN par-
ticles interacting harmonically with force constantv

U~gN!5(
i 51

N

(
j 5nbrs

v

2
@g i2g j #

2, ~1.3!

whereg i is the Cartesian position vector of particlei relative
to a reference~lattice site! position, can be recast as a sum
DN noninteracting harmonic oscillators, whereD is the spa-
tial dimension of the system

U~hDN!5
v

2 (
m51

DN

lN~m!hm
2 . ~1.4!

The coordinateshm in this reformulation describe collectiv
motions of the particles, such that thekth Cartesian deviation
(k51¯DN) is given as

g~k!5 (
m51

DN

hmfN~m,k!, ~1.5!
9-2



e
to
e

he
at
e
rs
b

th
g
ll
.
tin

n
e
n
e

f
de
nc
e

2
o

e-

d
a
a

bian
he
-
le to
re-

nd
on-
con-
nd
ys-
the

-
of

half
the
f
y of

alf,
ently

de-
coor-

e

SELF-REFERENTIAL METHOD FOR CALCULATION OF . . . PHYSICAL REVIEW E 65 036709
where the vectorsfN(m,k) are the normal modes for th
system. These modes can be expressed as the eigenvec
the harmonic interaction matrix, and their corresponding
genvalueslN(m) are the harmonic force constants for t
collective motion described by the normal-mode coordin
hM in a harmonic system of unit force constant. If th
minimum-energy configuration of the harmonic oscillato
forms a lattice, the normal-mode coordinates are given
the reciprocal lattice vectors@18#. Each plane-wave vector in
a small system will have a counterpart in a larger system
points in the same direction and has the same wavelen
We can in effect ‘‘grow’’ the system by coupling to the sma
system those modes that are found only in the larger one
fix ideas, and for the purpose of demonstrating and tes
the methodology, we henceforth restrict our consideration
periodic one-dimensional systems, for which

fN~m,k!5N21/2@sin~2pmk/N!1cos~2pmk/N!#

m,k51...N ~1.6!

and

lN~m!52F12cosS 2pm

N D G . ~1.7!

We categorize the normal modes of a one-dimensio
system of 2N particles asevenor odd. The even modes ar
symmetric about the center of the system, while the odd o
are antisymmetric; we number them accordingly with ev
and odd indices

f2N~m,k!5f2N~m,k1N! m even,
~1.8!

f2N~m,k!52f2N~m,k1N! m odd.

Each normal mode, or eigenvector, of theN-particle system
is directly proportional to anevennumbered normal mode o
the 2N system. This is pictured in Fig. 1, showing that mo
1 of theN-particle system has precisely the same freque
as that of mode 2 of the 2N system. Moreover, the amplitud
of mode 1 of theN system is that of mode 2 of the 2N
system multiplied by 21/2. All modes of theN system have
exactly this relationship to a corresponding mode in theN
system, specifically, modem of the N system corresponds t
mode 2m of the 2N system, so that fN(m,k)
521/2f2N(2m,k). The odd modes of the 2N system have no
counterparts in theN system, and contributions to the Cart
sian g from these modes are what set the configurations
the 2N system apart from those of theN system.

Let us consider the partition function of the 2N system,
expressed in terms of normal-mode coordinates

Q2N5
1

L2N E dhEdhOe2bU~hE,hO!, ~1.9!

where the superscripts ‘‘E’’ and ‘‘ O’’ on h indicate the set of
even and odd normal-mode coordinates, respectively, anL
is the thermal de Broglie wavelength. The limits of integr
tion are over all normal-mode coordinate values that have
03670
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particles in the system volume, and we note that the Jaco
for this transformation is unity. Let us now decouple t
odd-mode coordinateshO from the Hamiltonian of the sys
tem of particles, and have these coordinates instead coup
a collection of independent harmonic oscillators. In the
sulting hybrid system formed from the original particles a
these oscillators, the particle configurations will be c
strained to a subset of those originally available. These
figurations will exhibit the symmetry of the even modes, a
consequently they will have particles in one half of the s
tem occupying the same relative positions as particles in
other half. In addition, because all modes of theN system are
represented by the even modes of the 2N system, the com
plete set of 2N even modes can describe all configurations
the N-particle system in each half. But because each
moves identically, the configuration-set accessible to
odd-mode-decoupled~hybrid! 2N system is exactly that o
theN system. Since the system size is doubled, the energ
each configuration will be exactly double that of either h
assuming periodic boundaries are employed. Consequ
the hybrid 2N-partition function~superscript* ! is related to
that of an unmodifiedN-particle partition function

Q2N* ~b,2L ![l22NE
2L

dhEE dhOexp@2bU2N~hE!#

3expF2
1

2
bv (

m,odd
lN~m!hm

2 G
5L22NE

L
dhE exp@22bUN~hE!#E dhO

3expF2
1

2
bv (

m,odd
lN~m!h i

2G
522N/2QN~2b,L !QN

O~b!, ~1.10!

FIG. 1. Examples eigenvectors for a system ofN and 2N hard
rods which describe the motion of the hard rods. Each curve
scribes the amount the rod at any position is displaced as the
dinateh for the mode varies. The frequencies of mode 1 of theN
system and mode 2 of the 2N system are identical. Mode 1 and th
other odd modes of the 2N system have no counterparts in theN
system.
9-3
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C. DANIEL BARNES AND DAVID A. KOFKE PHYSICAL REVIEW E 65 036709
where the factor of 22N/2 arises from the Jacobian associat
with expressing the configurations of theN system in terms
of the normal mode coordinates of the 2N system.QN

O is the
partition function for the odd-mode harmonic oscillators,
cluding a factor ofL2N, it is given exactly as

QN
O~b!5

1

LN )
m,odd

S 2p

bvlN~m! D
1/2

. ~1.11!

Thus, the free energy of anN-rod system can be given i
terms of the hybrid 2N system at twice the temperatur
Presently we will circumvent the temperature issue by de
ing only with the hard-rod potential, where the configur
tional energy may have values of zero or infinity only.
Sec. V we discuss extensions from this simplifying case.

If it may be taken that the free energy is an extens
quantity, we have

AN~b,L !5A2N~b,2L !2AN~b,L !. ~1.12!

Combined with Eq.~1.8! via the canonical-ensemble bridg
equation@19#

exp@2bAN~b,L !#5
Q2N~b,2L !

QN~b,L !

522N/2
QN

O~b/2!Q2N~b,2L !

Q2N* ~b/2,2L !
.

~1.13!

Equation~1.13! forms the basis of the proposed method
calculating the free energy of a crystalline phase. The rati
partition functions can be evaluated by molecular simulat
via any of a number of standard methods. We will consi
the application of free-energy perturbation.

We note also that the desired free energy can be obta
from the simulation data via this relation

exp@1bAN~b,L !#5exp@1bA2N~b,2L !#
Q2N~b,2L !

QN~b,L !

5exp@1bA2N~b,2L !#22N/2

3
QN

O~b/2!Q2N~b,2L !

Q2N* ~b/2,2L !
. ~1.14!

This formulation has the advantage of not relying on
extensive nature of the free energy, but it is useless pra
cally since it requires prior knowledge ofA2N . We present it
here only because, given the exact expression forA2N for
hard rods, it can be used to test whether the simulation
vides correct values of the partition-function ratio witho
invoking also the extensive free-energy approximation.

III. SIMULATION METHOD AND DETAILS

We examine a system of hard rods in one dimension,
which the free energy for anyN is given exactly by Eq.~1.2!.

The ratio of partition functions in Eq.~1.13! describes a
system of 2N particles with complete freedom, relative to th
03670
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same system with the odd-mode coordinates decoupled f
the particle configurations and instead coupled to a se
harmonic oscillators~there is also the temperature differenc
but we can ignore this for the hard-rod potential that for
our present focus!. We evaluate this ratio via a multistag
free-energy perturbation~FEP! calculation. The procedure
may be applied in either of two directions. In one approa
which we will designate as ‘‘upstaging,’’ the series procee
from the hybrid system to the full 2N system; in the other,
which we designate ‘‘downstaging,’’ FEP proceeds from t
full 2N system to the hybrid. We useN stages, one for each
odd-numbered mode of the 2N system. In each stage,
single odd normal modem is selected for a FEP calculation
Once the mode is coupled~upstaging! or decoupled~down-
staging! in a FEP calculation, it remains so for the rest of t
stages of the series.

If we are upstaging, the perturbation consists of coupl
this mode to the configuration of rods, and turning off
harmonic potential. The FEP ensemble average gives
free-energy difference for one stage as

exp@2bDAm#5 K Q~m!expS 1
1

2
vlmhm

2 D L
m21

.

~1.15!

In this formula,Q(m) is a type of Heaviside function: it is
zero if coupling modem to the hard-rod system causes a
rod overlaps or misorderings, and it is unity otherwise; t
implements the hard-rod potential. The ‘‘m21’’ subscript on
the ensemble average indicates that hard-rod configurat
are sampled using all even normal modes and all odd mo
that became coupled in previous FEP stages in the series
that modem and all others are decoupled from the rod co
figurations. Of these decoupled modes, only modem is rel-
evant to the FEP calculation. When the perturbation is p
formed, the value of the coordinatehM is selected from a
Gaussian distribution, with probability density proportion
to exp(2vlmhm

2 /2). The total free-energy difference for con
verting the hybrid system to a fully coupled 2N system is
obtained by summing the Eq.~1.15! free energies over al
stages.

If we are downstaging, the perturbation consists of dec
pling the mode from the configuration of rods, and turni
on its harmonic potential. The appropriate ensemble aver
is

exp@2bDAm#5 K Q~m!expS 2
1

2
vlmhm

2 D L
m

. ~1.16!

Here, Q(m) functions again to eliminate from the averag
any perturbations that lead to hard-rod overlaps or misord
ings. The system samples configurations obtained from
even modes, as well as the odd modes~including m! that
have not yet been decoupled from the rods in the pertu
tion series. The Gaussian term for normal-mode coordin
hm in this average uses whatever value ofhm happens to be
in place when the perturbation is applied to decouplehm
from the hard-rod configuration. For a downstaging pert
bation, we can easily examine a large range of force c
9-4
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SELF-REFERENTIAL METHOD FOR CALCULATION OF . . . PHYSICAL REVIEW E 65 036709
stantsv for the harmonic reference with each perturbatio
Becausehm for the perturbation is given by its present valu
examination of many force constants simply entails eval
tion of the Gaussian term in Eq.~1.16! for each. This proce-
dure contrasts with an upstaging perturbation, where to
amine many force constants at once, we must generate
each a random value ofhm and couple it to the hard rods an
check for overlap. It is helpful to be able to consider ma
harmonic references, because force constants that are
small or too large will lead to inaccurate FEP averages du
poor sampling, and the optimum force constant may be
ficult to identify a priori.

There are two types of moves used in each simulation,
perturbation move between the reference and target sys
mentioned above, and a trial normal-mode displacem
move used to generate configurations of the rods.
normal-mode displacement is the random displacement
randomly chosen mode, and is analogous to the typical
particle displacement in Cartesian space. All rods move
lectively in response to a normal-mode displacement tr
This is easily accomplished by displacing each rod in acc
dance with the normal-mode vector’s contribution to its p
sition ~as opposed to regenerating the configuration by s
ming all the coupled modes!. Candidate modes include a
the even modes and those odd modes that are pres
coupled to the rods configuration. The even modem50,
which corresponds to uniform translation of the system
rods, is excluded from sampling. This has the conseque
of fixing the center of mass of the rods. The effect of th
constraint on the free energy can be evaluated exactly for
hard-rod system, and we include this consideration in
comparison of the simulation and exact free energies.

The choice to perform a FEP trial or a trial in the Marko
chain is made at random, with probability such that one
every 2N trials is a FEP trial move. If the move selected is
Markov trial phonon displacement, a mode from the
coupled to the hard-rods configuration is selected, each
equal probability. The trial displacement for that mode
determined randomly according to a uniform distributi
over some step size. In a conventional Monte Carlo displa
ment trial, the maximum step size is the same for ident
particles. This is not appropriate for normal-mode displa
ments because each mode contributes differently to the
ticle motion. The long-wavelength modes describe a mot
where adjacent particles move in a similar fashion,~i.e., for
the translation mode, all particles move an equal distanc
the same direction! while the short-wavelength modes repr
sent a motion where the distances adjacent particles m
may vary significantly, and possibly in opposite direction
Applying the same step size to all modes would not resul
an equal acceptance rate of trial configurations between
modes. We showed@20# that the standard deviations of th
singlet probability density distributions of the hard-rod a
harmonic systems are identical and proportional to the
verse square root of their eigenvalues. Correspondingly,
have also observed that the set of step sizes giving the s
trial configuration acceptance rate between the modes t
proportional to the inverse square of the eigenvalues. T
allows us to use a single global step size which when divi
03670
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by the square root of the eigenvalue of the selected m
yields an appropriate trial step size. We chose a global s
size to give an acceptance rate of 35%. The current valu
the selected mode is shifted by the trial displacement to g
erate a trial configuration, similar to adding a trial partic
displacement to the current particle position in Cartesian
ordinates. The trial configuration is transformed into Car
sian coordinates to test for overlap of the hard rods, rejec
the configuration if overlap or misordering occurs, and a
cepting it otherwise.

We performed simulations to measure the free energy
system of hard rods using the proposed method, conside
both upstaging and downstaging approaches. We exam
system sizes ranging fromN54 to N5100. For each sys-
tem, we performed a series ofN FEP stages. In each stage w
performed 105 Monte Carlo cycles, where each cycle co
sists of 2N trials of a phonon displacement or FEP test tr
in proportion as described above. We examined a very br
range of harmonic force constants with each FEP stage.

IV. RESULTS AND DISCUSSION

Because we use a nonstandard method of sampling
are interested in verifying that configurations important
the hard-rod system are properly sampled. To do this,
compare the radial distribution function measured in
normal-mode simulation with that from a convention
Monte Carlo simulation. The results for a system of ten ro
at a density ofr* [Ns/L50.7 are shown in Fig. 2. The
curves of the two simulations are essentially indistingui
able, lending confidence to the normal-mode sampl
method.

The approach to correcting the free energies for the c
motion is described in the Appendix. The correction requi
knowledge of the c.m. distribution in an unconstrained s

FIG. 2. Radial distribution function for a system of ten hard ro
at densityr* 50.7, evaluated using conventional Monte Carlo sa
pling in Cartesian coordinates, and sampling in normal-mode c
dinates.
9-5
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C. DANIEL BARNES AND DAVID A. KOFKE PHYSICAL REVIEW E 65 036709
tem. In the Appendix we compare the distribution obtain
by standard, Cartesian-space Monte Carlo sampling with
analytic expressions used to apply the correction. The si
lation data are noisy, but are consistent with the anal
forms. For N larger than 50 or so, the c.m. correction
smaller than the confidence limits of the measured f
energies.

Figure 3 plots the difference between the exact free
ergy given by Eq.~1.2!, and the simulation result based o
Eq. ~1.15!, as a function of the harmonic force constantv for
various system sizes at densitiesr* of 0.7 and 0.95~we note
that r* 51.0 is close packing!. This is an upstaging FEP
series. The simulation results exhibit a systematic error
increases with increasing system size, and which appea
be unaffected by density. A reasonable explanation for
error is that in some or all of the FEP stages there are c
figurations of the target that are not adequately sampled
the reference system. We examine this question further
low. We have not pursued this method further as we cons
upstaging to be a less effective approach than downstag
owing to the inability of upstaging to sample as easily
broad range of force constants.

Figure 4 plots the free energy per particle as a function
the harmonic force constant for simulations using Eq.~1.16!.
This is a downstaging series. Here there exists a broad ra
of harmonic force constants for which the simulation resu
are in very good agreement with the exact free-energy va
We have compared the simulation data to the exact va
expected from Eq.~1.2!, using both Eq.~1.13! which is
based on assuming an extensive free energy, and~not shown
in Fig. 4! Eq. ~1.14! which is less practical but invokes n
such approximation. ForN5100 and the higher densities
the difference between these comparisons is not signific
The simulation data are consistently lower than the ex
value taken from either formula, but over significant rang

FIG. 3. Error in the free energy given by the upstaging se
referential method, as a function of harmonic force constantv for
hard-rod systems of various sizes at densitiesr* 50.7 and 0.95,
respectively.
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of force constant they agree to within the confidence lim
of the simulation data.

It is of interest to examine the free-energy change ass
ated with each stage of the FEP series. One might cons
whether the contribution from each stage depends on
wavelength of the normal-mode coordinate being decoup
from the rod configurations. Equation~1.6! indicates that
each wavelength is doubly degenerate, with the mid
modes having the shortest wavelength~mode 99 for 2N
5200!, and the end modes having the longest~modes 1 and
199!. We ran three simulation series, changing the order
decoupling of the modes. First we turned them off in nume
cal order, from long to short wavelength for mode 99, ba
to long wavelength. We also ran simulations turning t
modes off from long to short wavelength, and finally turnin
the modes off from short to long wavelength. In Fig. 5 w
plot the entropy change per stage for these three simulat
as a function of the number of modes still coupled, so t
the data at the right correspond to the first perturbation of
series and the data on the left the last stage of the series
present this in terms of the entropy because it is useful
discussion that follows below; the free-energy change
trivially related by a sign change and a vertical shift of 0.5
account for the harmonic energy. We do not find a system
dependence of the free-energy change on the frequenc
the mode. Instead, we observe that the free-energy cha
associated with the decoupling of a mode depends on
order in which it lies in the sequence. The first decoup
mode, for example, contributes a constant amount to
overall free-energy difference, regardless of which mode
is.

Finally, we turn to the topic of the accuracy of these c
culations. We have argued elsewhere@5,6,21,22# that FEP
calculations must be performed in a direction such that c

-
FIG. 4. Free energy given by the downstaging self-referen

method, as a function of harmonic force constantv for hard-rod
systems of 2N5100 particles at densitiesr* 50.7 and 0.95, respec
tively.
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figurations important to the reference system encompas
the configurations important to the target. A necessary c
dition for this to hold is that the entropy of the referen
be greater than the entropy of the target, and thus the ent
change for the perturbation be negative. This condition
not sufficient however, inasmuch as it can happen that
reference and target have comparable-sized impor
configuration-space volumes which nevertheless do not c
pletely overlap. However, the larger and more negative
entropy difference, the more likely it is that the target co
figuration set is wholly contained in the reference configu
tion set. In this FEP method, we have the ability to tune
harmonic system so that the target can always be mad
have a smaller entropy than the reference. For the upsta
calculation, we require that the harmonic potential be su
ciently broad to encompass all the relevant contributions
the perturbation mode to the hard-rod system as it is cou
to it. Likewise, for the downstaging calculation, we need t
harmonic potential to be narrow, so that it is well contain
within the range explored in the hard-rod system as the m
is decoupled. Figure 6 shows an average measure of the
tropy change per stage for several densities, computed f
the exact formulas for the hard-rod and harmonic free en
gies, as a function of the harmonic force constant. The cu
shows that the entropy difference for the highest-density s
tem is substantially different from zero for force consta
greater than about 105 ~appropriate for downstaging! or less
than about 1021 ~appropriate for upstaging!. Perhaps the
poor quality of the upstaging results has something to
with the insufficiently soft harmonic systems examined
those simulations. The entropy change for each FEP stag
already presented in Fig. 5, provides a more fine-grai
view of the character of the FEP calculation. We must ha
all stages in an appropriate range of entropy difference
obtain completely accurate results. Clearly, some stages

FIG. 5. Entropy change per stage for downstaging series,
function of the number modes not yet uncoupled. System densi
r* 50.95 and harmonic force constant isv553105kTs22; the
number of rods in simulation isN5100.
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hibit entropy changes that are about 1.5k greater than the
average value, thus indicating that the appropriate rang
force constant suggested in Fig. 6 provides only a rou
guideline, and that more extreme values~softer or harder,
depending on whether upstaging or downstaging is be
performed! are appropriate.

V. CONCLUSIONS

We have shown this self-referential approach to be
pable of calculating the free energy of a system of hard r
using the downstaging perturbation direction, from t
2N-hard-rod system to theN-hard-rod plus harmonic sys
tems. The sign of the entropy change for each of the per
bation stages must be negative to yield accurate results,
the harmonic system can be adjusted to ensure this crite
is met. We also demonstrated that the correction to the f
energy per stage is not a function of the wavelength of
perturbation mode, but only of the number of modes w
which the hard-rod system still interacts. The propos
scheme can quickly become computationally expensive w
increasing system size because it calculatesN independent
averages, one for each stage.

One possible approach to increase the efficiency of
method is to conduct fewer FEP stages, and in each to
couple more than just one normal mode. However, in ot
work @6# we have shown that the optimal staging meth
uses intermediate stages with equal entropy difference
DS/k522. Since the entropy difference for each stage
already in this range, this heuristic would indicate that
cannot improve efficiency by having fewer, coarser stag
Another approach would apply a ‘‘parameter hoppin
method, in which Monte Carlo trials are performed that le
to fluctuations in the number of coupled modes. One mi
encounter difficulty with this approach in determining th
appropriate weighting function to apply to encourage
system to explore the full range of coupling~from none to all
of the odd modes!, but this problem is tractable and its ex
amination is worthwhile.

a
is

FIG. 6. Average entropy difference per particle for the dow
staging process, given as a function of the harmonic force cons
9-7
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C. DANIEL BARNES AND DAVID A. KOFKE PHYSICAL REVIEW E 65 036709
Certain problems can be anticipated in extending t
method to more practically interesting systems. First is
issue of the temperature. We were able to ignore this de
here because of our focus on a hard potential, but for
method to have any real value it must be applicable to
potentials as well. Our view now is that the temperature m
be stepped up or down as the modes are decouple
coupled to the system of interest. The question that be
examining is whether this process would have any adve
effect on the measurement of other properties. One of
advantages of the proposed method is its avoidance of

FIG. 7. Configurational center-of-mass distribution for a syst
of five hard rods. The dark line is the result of an analytic formu
and the light line describes data from a conventional Monte C
simulation.~a! Densityr* 50.5; ~b! r* 50.95.

FIG. 8. Additive correction to the free-energy difference p
particle for the neglect of center-of-mass motion, as a function
system size for two densities.
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tems or states that are examined only as a bridge betwee
target and reference systems, and which are otherwise i
evant. We do not anticipate problems in this direction, b
further study is needed.

The second critical extension of the method is to high
dimensions. The appropriate way to proceed with this is
work directly with reciprocal-lattice vectors as the basis
the particle coordinates@17#. An appropriate set of wave vec
tors can be selected to double the system size in one d
tion ~along a direct-lattice vector! via sequential coupling of
basis functions corresponding to the appropriate~‘‘odd’’ !
wave vectors. The overall approach would be much m
valuable if it could be developed in a way that does n
require complete system doubling, but instead could funct
by coupling or decoupling a few select modes. Presentl
does not seem that this formulation can be accomplish
given the variation of free energy with perturbation mo
that was observed in this paper.

The proposed method has demonstrated some promis
development of different avenues to solving the problem
calculating free energies of crystals by molecular simulati
However, further testing and perhaps reformulation of
methodology is warranted before considering the approac
be a viable solution to the problem. The method does at le
open up new thinking toward this issue, and can point
way to variants that may be of some utility.
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APPENDIX

In the normal-mode Monte Carlo simulations, the~even!
mode corresponding to uniform translation of the system
ways remains uncoupled in both theN and 2N systems. The
contribution of this mode to the free energy differs sligh
for the two systems, and for accurate calculations we sho
include it in the free-energy difference. One way to view th
contribution is to consider the distributionP(x) of the center
of mass~c.m.! in an unconstrained system. This distributio
is shown in Fig. 7 for a system of five hard rods at tw
densities. The figure compares simulation measurement
this distribution with an analytic form we developed prev
ously @20#. The c.m. exhibits a peak at the center of t
periodic system, which is simply a reflection of the fact th
there are fewer ways to arrange the rods when the c.m
constrained to be elsewhere. It is, for example, impossibl
arrange the nonoverlapping rods in any way that causes
c.m. to be located at the edges of the boundary. The ef
attenuates, and the distribution becomes flatter, with incre
ing density. The partition functionQN(x) having the c.m.
constrained withinDx of some pointx is related to the un-
constrained partition functionQN by

,
lo

r
f
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QN~x!5QNPN~x!Dx. ~1.17!

This formula indicates that we can correct for the uneq
effect of the c.m. constraint on theN→2N FEP calculation
r-

:

v.

g,

03670
l

by multiplying by the ratio of the distributions,P2N /PN ,
where the distributions are evaluated at the center of
system. This correction is plotted in Figs. 7 and 8 as a fu
tion of system-sizeN, for two densities. On the whole, th
correction is not significant.
-
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